

Implementing Customer Statements
at scale with AWS Lambda

Melbourne

Sydney

Brisbane

Auckland

Queenstown
Hobart

Magne8c Island

Perth

900+ team members

Best Place to Work in 2021 and 2022

Operating at over 140 clients

brad.jacques@mantelgroup.co.nz
Principal Consultant

The Discovery Phase

l Define the problem statement

l Uncover the unknowns

l Start capturing requirements

l Agree the ways of working

l Who are the key decision makers

l AGILE isn’t agile when there is no agility

The Team

l 1 x Delivery

l 2 x UX Design

l 2 x Digital

l 2 x Data

The Problem Statement

l Regulatory requirement to deliver customer statements

l Fixed deadline

l Historical data for trending and comparison

l Customer must have direct access without authentication

l Statements accessible by all

Technical Spikes

l Figma to iterate UX designs

l PDF generation

l Convert HTML/CSS/Fonts to PDF

l Snowflake connectivity

l Infrastructure (IaC) Data Analysis

l Snowflake data analysis looking for peak loads

l Stress test early to validate design

Just in time Architecture

Validate the Design

l Stress testing

l Find historical peak monthly volumes

l Forecast and execute at N x times peak

l Customer profiling

l Ensure data is available for frequent testing
Datasets

l One customer for each profile

l Largest month

l Forecast N x largest month

PDF Generation & S3 Upload

Time for one lambda execution to process N accounts

Number of accounts Exec time seconds Forecast 100,000 docs

1 2 55.5 hours

10 7 19.4 hours

100 TBA

Querying Snowflake

How many records can be returned by a single query in one lambda execution

Query number of rows Exec time seconds Memory used MB

1 1 121

100,000 16 349

500,000 15 1,161

1,000,000 32 2,024

20,000,000 failed Exceeded 10,000 limit

Customer Data Analysis

Within each Month we can see data skew

Transactions per account % population

Up to 20,000 99.9

Over 20,000 0.1

Render design to PDF

l Puppeteer provides an API to control a headless Chromium browser

l Deployed as a Lambda layer

l Header / footer page numbers

l Different layout CSS for cover page and transactions pages

l Requires 2 PDF’s to be generated then merged
npm

l chrome-aws-lambda

l pdf-lib

l handlebars

l chart-js

Tuning AWS Lambda

l How many DDB events are processed per execution

l Memory consumption per execution

l Number of CPU cores

l How many lambda to execute in parallel

l Log and drop the outliers < 0.1% population
event stream

batch_size = 10

parallelization_factor = 10

bisect_batch_on_function_error = true

maximum_retry_attempts = 5

Tuning Puppeteer

l Go-Live ~38 PDF documents per second uploaded to S3

l Disabled 34 chromium features on start up

l No file I/O use in-memory Buffers

l In-line CSS

l In-line Fonts (base64)

l In-line SVG (base64)

l Use image sprites (filters change hue)

npm

l html-minifier-terser

Reconciling the system

l Reconcile using Month ID (e.g. 202309)

l Separate lambda is responsible for

l Query snowflake by monthId (index)

l Query DDB by monthId (pk)

l Query S3 by monthId (path)

Summarising

l Do the simple thing first

l Small teams with fast feedback loop (showcase often)

l Identify risk early, shift left, and spike

l Continuously measure performance, and stress test

l Isolate context boundaries (e.g. lambdas)

l Solution must prove itself correct

