

Implementing Customer Statements at scale with AWS Lambda

brad.jacques@mantelgroup.co.nz

Brisbane

Magnetic Island

Principal Consultant

Mantel group

Perth

900+ team members

Best Place to Work in 2021 and 2022

Operating at over 140 clients

The Discovery Phase

- Define the problem statement
- Uncover the unknowns
- Start capturing requirements
- Agree the ways of working
- Who are the key decision makers
- AGILE isn't agile when there is no agility

The Team

- 1 x Delivery
- 2 x UX Design
- 2 x Digital
- 2 x Data

The Problem Statement

- Regulatory requirement to deliver customer statements
- Fixed deadline
- Historical data for trending and comparison
- Customer must have direct access without authentication
- Statements accessible by all

Technical Spikes

- Figma to iterate UX designs
- PDF generation
- Convert HTML/CSS/Fonts to PDF
- Snowflake connectivity
- Infrastructure (IaC)

Data Analysis

- Snowflake data analysis looking for peak loads
- Stress test early to validate design

Just in time Architecture

Validate the Design

- Stress testing
- Find historical peak monthly volumes
- Forecast and execute at N x times peak
- Customer profiling
- Ensure data is available for frequent testing

Datasets

- One customer for each profile
- Largest month
- Forecast N x largest month

PDF Generation & S3 Upload

Time for one lambda execution to process N accounts

Number of accounts	Exec time seconds	Forecast 100,000 docs
1	2	55.5 hours
10	7	19.4 hours
100	TBA	

Querying Snowflake

How many records can be returned by a single query in one lambda execution

Query number of rows	Exec time seconds	Memory used MB
1	1	121
100,000	16	349
500,000	15	1,161
1,000,000	32	2,024
20,000,000	failed	Exceeded 10,000 limit

Customer Data Analysis

Within each Month we can see data skew

Transactions per account	% population
Up to 20,000	99.9
Over 20,000	0.1

Render design to PDF

- Puppeteer provides an API to control a headless Chromium browser
- Deployed as a Lambda layer
- Header / footer page numbers
- Different layout CSS for cover page and transactions pages
- Requires 2 PDF's to be generated then merged

- chrome-aws-lambda
- pdf-lib

npm

- handlebars
- chart-js

Tuning AWS Lambda

- How many DDB events are processed per execution
- Memory consumption per execution
- Number of CPU cores
- How many lambda to execute in parallel
- Log and drop the outliers < 0.1% population

event stream

patch_size	= 10
parallelization_factor	= 10

bisect_batch_on_function_error = true

Tuning Puppeteer

- Go-Live ~38 PDF documents per second uploaded to S3
- Disabled 34 chromium features on start up
- No file I/O use in-memory Buffers
- In-line CSS
- In-line Fonts (base64)
- In-line SVG (base64)
- Use image sprites (filters change hue)

npm

• html-minifier-terser

Reconciling the system

- Reconcile using Month ID (e.g. 202309)
- Separate lambda is responsible for
 - Query snowflake by monthld (index)
 - Query DDB by monthId (pk)
 - Query S3 by monthId (path)

Summarising

- Do the simple thing first
- Small teams with fast feedback loop (showcase often)
- Identify risk early, shift left, and spike
- Continuously measure performance, and stress test
- Isolate context boundaries (e.g. lambdas)
- Solution must prove itself correct

